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Comparison of Implicit and Symbolic Implicit 
Monte Carlo Line Transport with Frequency Weight 

Ve c t o r Ex t e n s io n 
Michael Scott McKinley, Eugene D. Brooks IIl and Abraham Szoke 

University of California 
Lawrence Livermow National Laboratory 

Livermore, California 94550 

E-mail: mckinley9@llnl.gov; brooks3 @Ilnl.gov; szoke I @Ilnl.gov 

We compare the Implicit Monte Carlo (IMC) technique to the Symbolic IMC 
(SIMC) technique, with and without weight vectors in frequency space, for time- 
dependent line transport in the presence of collisional pumping. We examine the 
efficiency and accuracy of the IMC and SIMC methods for examples involving the 
evolution of a collisionally pumped trapping problem to steady-state, the surface 
heating of cold media by a beam, and the diffusion of energy from a localized region 
that is collisionally pumped. The importance of spatial biasing and teleportation 
for problems involving high opacity is demonstrated. Our numerical solution, along 
with its associated teleportation error, is checked against theoretical calculations for 
the last example. 
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1. INTRODUCTION 
Time-dependent transport of radiation from resonance lines involving spontaneous emis- 

sion is used in the study of stellar atmospheres and in laser produced plasmas. The transport 
equation for photons is coupled to a time-dependent level population equation. This sys- 
tem of equations can prove difficult to solve due to stiffness and the wide range of opacity 
inherent in an atomic line profile. 

Advances have been made in the area of Monte Carlo methods for this problem. Encour- 
aged by the success and robustness of implicit Monte Carlo techniques in local thermody- 
namic equilibrium, an implicit method was developed for line transport. While Implicit 
Monte Carlo (IMC)[ 13 works very well for most cases, it contains an effective scattering 
term that is inefficient when dealing with optically thick problems and which becomes 
negative for an atomic line in the gain regime. The Symbolic Implicit Monte Carlo (SIMC) 
method [2] was born in the notion that you can track and score spontaneously emitted par- 
ticles with an unknown symbolic weight that is determined at the end of a time step. This 
removes the source of the ineffiency, the effective scattering term, from the IMC method. 
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The extension of the SIMC method to thermal radiation in local thermodynamic equilib- 
rium was first published in [3]. A key feature of that work was noting that, once effective 
scattering is removed, one may track particles containing weight vectors in frequency space 
instead of using statistical sampling. Little demonstration of the advantage of weight vec- 
tors is offered in [3]. We demonstrate in  this paper that a significant advantage results if 
one desires spectral information from the problem output. 

The goal of this paper is to compare the three methods (IMC, SIMC and SIMC with 
weight vectors in frequency space) for slab geometry. The codes that implement these 
methods model a two level atom in slab geometry with collisional coupling between levels 
and with incident radiation. We study the methods for a variety of problems in an attempt to 
compare and contrast the techniques under a wide range of operating conditions. We look 
at computational efficiency, accuracy and convergence of results as a function of time step, 
zone size and variable width zoning strategies. Sensitivity to spatial biasing for problems 
involving high opacity, which can have a significant impact on computational efficiency, is 
also explored. 

Three test problems of study are presented in this paper. The first problem examines 
the performance of the methods for high opacity. The second test problem involves an 
opaque cold slab heated by incident radiation that is off line center. The third test problem 
looks at a case in which the only source of photons is a central zone in a slab that is 
collisionally pumped. This test problem has a partial analytical solution that is used to 
verify the accuracy of the numerical methods. 

In this investigation, we demonstrate that the SIMC method does well in reducing noise 
for high opacity problems, and that the weight vector extension to SIMC provides a further 
substantial reduction in noise for problems where spectral information is desired. We also 
show that a geometric progression of zone sizes near an interface, with spatial biasing 
for spontaneous emission, is effective in improving the performance of these methods. 
Finally, we show that IMC is less susceptible to teleportation error than SIMC, but that 
this advantage evaporates as the time step size is reduced in order to obtain better temporal 
accuracy. 

2. MATHEMATICAL METHOD 
2.1. Derivation of Methods 

For a two-level system in slab geometry that includes collisional pumping between 
atomic levels, the radiation transport equation is 

where c is the speed of light, x is the position in the slab, p is the direction cosine of the 
radiation, v is the frequency of the radiation, f (p ,  Y ,  z, t )  is the photon number density 
distribution per unit atom density, nz(z, t )  is the upper level population fraction, nl(z, t )  
is the lower level population fraction, 4 2 1  is the spontaneous emission rate, $(a, u )  is the 
Voigt line profile normalized to unit integral [4], and K12 = nN where n is the lower state 
absorption cross section and N is the atom number density. The coefficient K . L ~  is defined 
by 

91 

92 
K21 = -K12, 
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where g1 and 92 are the statistical weight factors for levels 1 and 2. As in [ 11, we consider 
the problem in the regime of complete redistribution and no physical scattering of photons. 

The equations governing the atomic population fractions n1 and n2 are 

and 

where C ~ Z  and C21 are rate constants for the collisional transitions 1 -+ 2 and 2 -+ 1, 
respectively. One must also add in appropriate boundary conditions and initial state to the 
above equations. 

Using (4), equations (1) and (3) may be rewritten as 

and 

dn 
dt 
- -  - CIZ - (CIZ + CZI + AZI) n + c [KIZ - (K21 + K12) n] 

respectively, where n is the upper level population fraction. 
We can generate a finite differencing scheme in time for (6) by using the standard IMC 

technique [l]. We integrate (6)  from t o  to to + 4 t .  In the spontaneous emission and 
collision terms, we approximate n(t) by n(t0 + a t ) .  In the absorption term, we substitute 
n(t0) for n(t) and obtain 

In the standardIMC technique [ I], we substitute n ( tof4 t )  from (7) into the spontaneous 
emission term of (5 )  while using n(t0) in the absorption term. After several manipulations, 
we obtain 
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where y is defined as 

Equation (8) can be interpreted as a transport equation with a net absorption, oa, and 
effective scattering, os, contribution as given by 

and 

where the fraction, f ,  is given by 

The fraction, f ,  determines how much effective scattering the problem contains. As 
f approaches unity, effective scattering vanishes. The disadvantage of this method is 
that the effective scattering term dominates the execution time in optically thick problems, 
resulting in very long problem runs. Reducing the effective scattering by making )approach 
1 requires a smaller time step which also increases execution time. 

Symbolic Implicit Monte Carlo [2] achieves implicit time integration using a different 
point of view. Photons produced by spontaneous emission are given a symbolic weight that 
remains undetermined until the end of the time step. The Monte Carlo procedure is the 
same as for IMC, except there is no effective scattering term. Particle scoring results in a 
linear system of equations that are solved for the upper atomic population fraction at the 
end of a time step. After spatial discretization (see Sec. 2.3), the upper atomic population 
is updated with 

72 ( to  + At)i = n(to)i + [C12 - (Ci2 + C21 + A2i) n ( t o  + At),] At 
+ c [K12 - (K2l + K12) 7 4 t O ) i I  

x FNi + FSijn ( t o  + At)j /vi, (13) 
1 1  I 

where FN,  is the contribution to 

to+& 

/ dx lo dt l1 d/J I” d J 4  (VI f (P, 21 VI t )  (14) 

within zone i coming from bundles with numerical weights; FSijn(t0 + At)j is the 
contribution to equation (14) within zone i coming from bundles with symbolic weights 
that were born in zone j ;  n(to)i is the upper level atomic population fraction in zone z 
at start of time step; n(t0 + At)i is the upper atomic population fraction in zone i at the 
end of the time step; and Vi is the thickness of zone i. For further details, we refer to [ 2 ] .  
Although the problems we present will involve small numbers of zones, and as a result 
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the solution of small linear systems using a direct solver, there is some concern that the 
size of the linear system to be solved will become intractable using direct solution methods 
for problems with larger zone counts. Jacobi iteration [ 5 ] ,  or other more sophisticated 
techniques, does very well at solving the system of equations given in (13) by using the 
values in the previous time step for the initial starting point. 

2.2. Weight Vector Extension 
Since SIMC removes effective scattering, it has a simpler Monte Carlo simulation pro- 

cess than that of standard IMC. While the frequency (energy) of a photon may alter how its 
weight is attenuated due to differing absorption cross sections, i t  does not alter the photon’s 
direction. If there is no real physical scattering, two photons with the same geometric start- 
ing conditions, differing only in frequency, will traverse the same path through the problem. 
This offers the possibility of treating frequency space deterministically by selecting a fre- 
quency discretization and associating a weight vector, indexed by this discretization, with 
the photon. 

As was done in [ 3 ] ,  we have extended the SIMC algorithm by associating a vector of 
weights, indexed by the frequency group, for each photon simulated. Instead of sampling 
the line profile for spontaneously emitted photons as is the case for IMC, this method 
constructs the vector of weights by assigning to each emission frequency the birth weight 
times the emission probability for that frequency. Unlike [3], we do not collapse the 
weight vector to a single frequency at the end of time step. Instead, we carry the vector of 
weights through successive time steps, obtaining deterministic spectral information when 
the particle leaves the problem domain. 

The weight vector approach, in the absence of frequency dependent physical scattering 
(e.g. Compton Scattering), handles frequency space deterministically. The role of Monte 
Carlo is then relegated to integrating the possibly complicated geometry of the problem. 
This approach has a significant advantage over frequency sampling when the frequencies 
with a high emission probability are also strongly absorbed, with photons being transported 
elsewhere in the frequency spectrum. An example, demonstrated in this paper, is the case 
of line transport with a high opacity at line center where most of the transport occurs in the 
wings of the line. Using the weight vector approach, every photon samples the important 
frequency region where transport occurs and develops the correct output spectrum for the 
geometrical path being sampled. 

2.3. Uniform and Geometric Zoning 
We use afinite differencing method where the upper atomic population,n(s, t ) ,  is defined 

at the zone center, and for any time step, n(z, t) is constant within each zone. We have 
tried two basic zoning schemes: equally spaced zones and spacing based on a geometric 
progression starting from the surface, where the thickness of the surface zone was close to 
one optical depth at line center. Figure 1 shows the whole problem divided into 7 zones 
where a is the smallest zone, b is the length of the slab, and y is a multiplicative factor. 
Only the solid lines are to be considered; the dashed lines lines show the subzone scheme 
that will be discussed latei. We have found that this geometric spacing is essential to 
accommodate the boundary layer: a rapid change of the atomic population with depth near 
the surface and a rapid development of the spectrum of photons leaving the surface. The 
SIMC method was more sensitive to zoning than the IMC method due to the portion of the 
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absorption that is transmuted into effective scattering in IMC, but the same issues prevail 
in the limit of small time step size in IMC. 

b 
FIG. 1. Geometric Zone and Subzone Construction 

When the problem of interest involves high opacity, little transport occurs at line center. 
The emission profile is strongly peaked at line center but so is the absorption profile. As a 
result the more rarely produced frequencies (far from line center) travel further and account 
for much of the transport. This property of line transport (strongly emitted frequencies 
are also strongly absorbed) makes optically thick problems quite sensitive to zoning and 
importance sampling schemes. Straightforward Monte Carlo sampling of the emission 
profile, only to have these photons absorbed, produces results with excessive noise. 

2.4. Biasing 
The first spatial importance sampling scheme we have investigated is directly tied to the 

zoning. For a problem with high opacity at line center, the small zones near the surface 
are very important to getting the transport and emission spectrum right, and therefore must 
be treated with more particles per unit volume than the thicker zones in the center of the 
problem. We compared three schemes. The first is straightforward emission of particles 
with a constant density per unit volume (unbiased). The next scheme involves emission 
of an equal number of particles in each zone, which translates to a geometric weighting 
(based on the zoning scheme), in favor of the smaller zones near the surface. The final 
scheme involves a further geometric biasing within each zone so particles are born closer 
to interfaces where they have a greater chance of crossing between zones. 

Favoring of photons born near the surface of an opaque problem is key to obtaining an 
emission spectrum with low statistical error. For photons at line center, only those born near 
the surface have a good chance of streaming out of the problem and making a contribution 
to the output spectrum. Importance sampling schemes improve the statistics of escaping 
photons that have a significant weight in the line center frequencies. 

A final step in importance sampling is required to efficiently treat the large central zones 
in problems with high line center opacity. If particles are emitted uniformly within the 
zone, one emits line center photons with high probability. These photons travel only a short 
distance within the zone before their weight shrinks to the point of being insignificant, 
and their particle history is terminated. A lot of computer time is expended computing 
a deterministic equilibrium solution for the central zone, while getting very noisy results 
for the transport across zone boundaries, the quantity of interest. We found that just as 
the geometric zoning scheme with an equal number of photons in each zone improves 
the emission spectrum from a surface, a similar geometric subzone scheme to importance 
sample the regions near the surface of the interior zones reduces the noise in the transport 
between thick interior zones, resulting in an improved solution throughout the problem. 



7 

The subzone biasing scheme is very similar to the zone biasing described above. One 
creates a subzone grid for each real zone in the problem, starting with a thin subzone at 
each surface of an interior zone. Successive subzone sizes are then obtained in a geometric 
progression by increasing the subzone size by a factor of 2, working inwards to the interior 
of the zone from both sides. The process is stopped when the remainder of the zone is just 
larger than the subaone on each side of it. In Fig. 1, we show this subzone configuration 
using the dashed lines. Just as was the case for zonal biasing, an equal number of photons 
is emitted in each subzone of a given zone. The weights of the photons emitted in each 
subzone are adjusted so that emitted weight is distributed uniformly across the zone and 
the correct total weight is emitted within the zone. 

2.5. Photon Teleportation 
The solution to the equation governing the atomic populations is discretized in space and 

time, and one can expect some systematic errors to arise from this. Photon teleportation 
is an error that arises when the absorption mean free path is small compared to the size 
of a zone, and the time step size is also small (in the case for IMC). As photons stream 
through a zone they are attenuated by absorption. If the opacity is high, photons entering 
one side of a zone are completely absorbed very near the boundary. The scoring of energy 
deposition, however, is done as if the absorption had taken place evenly across the entire 
zone. On the next time step, the corresponding spontaneous emission is handled assuming 
this uniformity in the zone. In effect, spontaneous emission occurs too early on the far 
side of the zone and energy is transported across the problem too quickly. This error is 
aggravated in IMC if the time step size is reduced without a coordinated adjustment to the 
zone size. 

SIMC is much more susceptible to this problem than IMC. This is due to the reduced 
net absorption for IMC, where a portion of the physical absorption has been converted to 
effective scattering. This beneficial influence of effective scattering comes at the cost of 
increased execution time and evaporates as the time step size is reduced. In the limit that 
At goes to 0, IMC has the same teleportation error as SIMC. Teleportation error is properly 
addressed by decreasing the optical depth per zone. Unfortunately, reduction of zone size 
in order to reduce teleportation error leads to an increased running time as particles cross 
many zones in order to escape the problem. 

3. EXAMPLE PROBLEMS 
We use three test problems to probe the properties of the implicit Monte Carlo methods 

studied in this paper. The first example is a simple collisionally pumped system used in [ 11 
and [2], although we push to a much higher opacity given the increased speed of modern 
microprocessors. The second example involves the heating of cold media by incident 
radiation. The third example, which has an analytical solution available for comparison 
purposes, involves collisional pumping in the center of the slab. 

In comparing the methods, the two issues of concern are systematic and statistical errors. 
The systematic error is an error in the numerical modeling of the physics that persists in  
the limit of large Monte Carlo particle count. It can be controlled by suitably refining 
the time step size, the choice of zones, the choice for frequency bins, or by modifying 
a given method to be higher order accurate in these parameters. The implicit transport 
methods examined in this paper develop subtle interplay between these different controls 
on discretization error, and we will demonstrate this in the results presented below. 
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Given the discretization parameters that control systematic error (and any importance 
sampling scheme) the number of Monte Carlo particles controls the statistical error for a 
given problem run. In the limit of large particle count, the statistical error scales inversely 
with the square root of the particle count. This fact provides a means to evaluate the 
efficiency of the methods. We choose a particle count for each method that results in a 
given execution time (first confirming that the noise envelope is scaling like the square of 
the particle count in each case) and then examine the noise envelope for 100 independent 
runs. The relative speeds of the methods, in the limit of large particle count, are then given 
as the square of the ratios of the measured noise envelopes. 

Unless otherwise stated, each example will use 16 frequency groups, each of 0.2 Doppler 
widths. In addition, the line profile, and therefore the frequency spectrum, is symmetric 
around zero and we take advantage of this symmetry. Spatially, each problem is divided 
up into 21 equally spaced zones unless noted otherwise. 

In the results below, problem output is always presented as the mean and standard 
deviation (not error in the mean) of 100 independent problem runs. The mean of a large 
number of problem runs provides the best opportunity to spot systematic error, while the 
standard deviation gives us a good idea of just how much scatter would be present in a 
single run along with a reliable way to estimate the computational efficiency of the method. 

3.1. Collisionally Pumped Trap 
The first example studied is a slab of unit width that is collisionally pumped and has a 

steady-state optical depth of 1000. The slab is uniform with equally spaced zones and has 
no incident radiation impinging on it. The problem input parameters, K12 and Kzl, were 
tuned in order to obtain the specified optical depth at line center. See Table I for the physical 
parameters. The pumping started at t = 0 and the problem was run until steady-state was 
reached. 

TABLE I 
Physical Parameters for High Optical Depth Example 

Parameter Value 

0 
0 
0 
0 

0.0 
2170 
2170 
3.3  
0.25 
0.67 

The main difference between IMC and SIMC is that IMC has effective scattering while 
in SIMC photons quickly stream through the problem and feel the full toll of absorption. 
Since relatively small changes, as a function of the position coordinate, are occurring in  
the middle of the slab while a high rate of change exists near the boundaries, it makes 
sense to examine the effects of zone refinement and spatial biasing. We will first examine 
geometric zoning without biasing by making the zone widths near the boundary thinner 
using a geometric progression, with a multiplication parameter of 1.75, as discussed in 
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Section 2.3. Smaller zones are needed to resolve the atomic population near the surface of 
the slab where the basic assumption of the numerical method, that the atomic population is 
constant within the zone, is violated. 

The upper atomic population is shown in Fig. 2 for the uniformly zoned case as well 
as for the geometrically zoned case. Only the first tenth of the slab is shown as the upper 
level atomic population does not change much past what is displayed. In this figure, i t  
is clear that geometric zoning is needed to properly capture the shape of the upper level 
atomic population near the surface. To check the correctness of the numerical solution, we 
have estimated the atomic population near the center of the slab with an escape probability 
analysis[4] and found that it agrees our Monte Carlo solution. 

a.zx 

0.26 

c 
‘r: 0.24 - 
0 
? 
h 

< 
& 0.22 
3 

0.2 

O.IR 
0 001 0 02 0 03 OM I) 05 006 0 07 0 ox ow 0 1  

Posllon 

+ U n i f m  IMC . . O .  ’ U n ~ l m  SIMC -*- Ceometnc IMC . . D . . Cwrmmc SIMC 
~ 

FIG. 2. Upper Atomic Population for Collisionally Pumped Trap Example 

In Fig. 3, we show the standard deviation for the 100 problem instances used to produce 
the averaged results shown in Fig. 2. The noise envelope for SIMC is about a factor of 
6 less than that for IMC on this problem, corresponding to a factor of 36 improvement in 
execution speed. Geometric zoning has increased the noise envelope near the border and 
has reduced it away from the surface, due to the relatively few particles born in the smaller 
zones. 

The exit spectrum for the collisionally pumped trap example is plotted in Fig. 4 as 
a function of frequency in units of Doppler widths for the geometrically zoned scheme. 
Uniform zoning is not shown as it is very poor due to teleportation errors as discussed 
in Sec. 2.5. While the uniform zone spectrum (not shown) for IMC is very noisy, i t  
does give the correct frequency output shape since its effective scattering prevents photon 
teleportation. This figure shows that all three methods predict the same exit frequency 
distribution when geometrically zoned. IMC’s plot is less accurate due to noise which will 
be discussed next. 



10 

6.0E05 

5.OE-05 

4 . 0 ~ ~  

2.0E-05 

I.OEU5 

O.OE+OO 
0 I 0 5  I 5  2 2 5  3 

Frequsncv 
__ -__- - 

+IMC - Q- SlMC - - Q  - -SIMC w l  WFV ---_ 
FIG. 4. Exit Frequency Distribution for Collisionally Pumped Trap Example 



11 

When examining the noise envelope for the frequency dependent output, as given in Fig. 
5,  SIMC with weight vectors begins to shine brightly. The noise to signal ratio for IMC 
and SIMC is independent of frequency below 2.5 Doppler widths, but then climbs sharply 
as the frequency is increased and the signal drops in the wing of the line. For SIMC with 
weight vectors, however, the noise to signal ratio drops rapidly with increasing frequency, 
maintaining a good statistical accuracy in the wing of the line. This happens because every 
photon carries spectral information deterministically in this method. This advantage can 
be very important if accurate problem output is required in the rarely sampled wing of the 
line. 

0 6  

0.5 

0.4 

02 

0.: 

0. I 

I 

When employing geometric zoning, with unbiased emission, the probability that a photon 
is born in the thin zones near the surface is quite small. Biasing allows for more sampling 
to occur in the thinner zones (where the upper atomic population is changing and the output 
spectrum is being influenced) and less in the larger zones (where very little is happening). 
The basic idea behind geometric zoning along with biasing is that regions that experience 
changes in upper atomic population are more important to development of the spectrum 
of transported photons. Therefore, they should be sampled more often in order to resolve 
finer structural details. This is accomplished by emitting a fixed number of particles per 
zone, leading to a geometric weighting that favors emission near the surface. 

As a second step in importance sampling, we add subzone biasing in which particles are 
more likely to be emitted closer to a zone's edge. As with the reasoning behind geometric 
zoning with an equal number of particles emitted per zone, subzone biasing places Monte 
Carlo photons closer to the interface of a zone so that they will more likely cross into 
another zone and contribute to radiative transfer between zones. Monte Carlo photons born 
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- - A  - - SIMC w/ WFV, 

deep within a zone, at line center, lose a large amount of weight through attenuation before 
reaching a boundary and are therefore less important. 

The effects of biasing are shown in  the noise to signal ratio of Fig. 6. Comparing to Fig. 
5, all three codes have improved their noise significantly at line center, at the cost of the 
noise becoming worse far from line center. SIMC with weight vectors, however, provides 
a uniformly low noise to signal ratio for the complete frequency spectrum. As a note, the 
effect of subzone biasing is not apparent here as the frequency spectrum is developed in the 
thin zones near the surface. Subzone biasing improves the frequency spectrum of photons 
crossing an interface deep inside the slab. 

0 0.5 I 1.5 2 2 5  3 

Freq-ncv 

FIG. 6. Noise to Signal Ratio for Fully Biased Exit Frequency in Collisionally Pumped Trap Example 

3.2. Surface Heating Problem 
Our second problem is the line transport version of a slab with surface heating. Low 

intensity radiation impinges on the left surface of an optically thick slab perpendicularly. 
The incoming beam is monochromatic in the wing of the line. As the beam penetrates the 
slab, photons are absorbed and reemitted with a spectrum given by the line profile. The 
slab is initially cold and has an initial optical depth of 100 at line center. The problem 
parameters are given in Table 11. 

The incoming radiation heats the slab, first heating the surface and then causing it to 
emit radiation with a profile characteristic of the trapping problem presented in Section 3.1, 
The excitation then traverses the slab and transmission eventually occurs out the far side. 
This form of heating is interesting in  that it clearly shows how IMC and SIMC can make 
systematic errors. The data in Figs. 7 and 8 is for time = 200, achieving steady-state at 
the surface and extending to the middle of the slab, but is just short of steady-state for the 
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TABLE I1 
Physical Parameters for Surface Heating Problem" 

Pmrneter Value 

0 
0 

1 x 10-5 
0 

0.0 
I70 
I70 
3.3 
0 
0 

1.3 

transmitted radiation due to the long time to penetrate the slab. We vary the time step size 
and the number of zones, in order to examine the effect on the IMC and SIMC methods. 

In Fig. 7, the upper level atomic population versus position, at time 200, for the first 20% 
of the slab is shown. The "Base IMC" and "Base SIMC" curves are shown for 21 equally 
spaced zones, and a time step size of 5.  Also shown is the result for the IMC algorithm, 
with the time step size reduced by a factor of 256, and the result for the SIMC algorithm, 
with the zone size reduced by a factor of 10. This refined zoning for the SIMC algorithm 
provides the correct solution for the problem, with the 21 zone Ih4C solution being close 
to correct in the sense of the average of the correct solution over the coarser zoning. The 
results for SIMC with 2 1 zones suffer from photon teleportation problems, as discussed in 
Sec. 2.5. The IMC algorithm is less sensitive to photon teleportation, as long as one does 
not refine the time step. When the time step for IMC is reduced by a factor of 256, it also 
suffers teleportation error, falling into agreement with SIMC for the 21 zone case. The 
IMC does well for a coarse zone and time step choice (apart from increased noise), but the 
solution moves in the wrong direction when the time step size is reduced. 

In Fig. 8, we show the flux leaving the right hand side of the slab at time 200. All of 
the methods, and choices of zoning and time step size, neglecting noise, agree pretty well 
where significant energy is transported far from line center. Again, photon teleportation 
becomes a problem near line center if the time step for IMC is refined, or large zone sizes 
are used for SIMC. Note the very significant advantage for SIMC with weight vectors in 
the region where significant energy is transported. 

The effects of photon teleportation error become clear when we examine the time de- 
pendent heating of a region near the surface of the slab (the region occupied by the first 
zone for the case of 21 equally spaced zones and average of the corresponding zones in 
the case of 210 zones) and the time dependent heating of a similar region in the middle of 
the slab. Again, IMC and SIMC with zone refinement give correct solutions. In Fig. 9, 
we show the surface heating as a function of time. In this case, teleportation error results 
in slower heating of this region. In Fig. 10, we show the heating in the middle of the slab 
as a function of time. Accumulated photon teleportation error is overheating this region. 
This is consistent with the view that photon teleportation error moves energy through the 
material too quickly. 
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Overall, this example demonstrates that IMC is much more forgiving than SIMC, with 
respect to bad zoning. One must be careful, however, in becoming too reliant on this 
feature of IMC. IMC will suffer from photon teleportation error if the time step is refined, 
and the user may think that the solution is getting better rather than worse. Therefore, 
we have concluded that the convergence characteristics of IMC, in response to time step 
and zone refinement, are very poor and it is hard to know that one has a correct solution. 
SIMC, on the other hand, demonstrates rapid convergence in  response to time step and 
zone refinement. 

3.3. Milne’s Problem 
In our last test problem, we consider a localized source in the middle of the slab and an 

opacity that is independent of frequency. This approximation for the opacity, known as the 
grey approximation or Milne’s problem [4], offers an analytical solution that can be used 
to check the accuracy of the numerical results. 

Swra 

FIG. 11. Milne’s Problem Layout 

We simulate a grey slab by defining only one energy group of width Av. The physical 
configuration of this problem can be seen in Fig. 11. We define a central zone to provide 
a source of collisionally pumped photons of width L,,,. In this central zone, C12 is to set 
a small value consistent with the approximations required for an analytical solution. The 
problem is set up with 21 equally spaced zones and the physical parameters specified in 
Table 111. 

TABLE I11 
Physical Parameters for Milne’s Problem 

Parameter Vdue 

K12 
K2 1 

Azi  
C12 (Center Zone) 
Clz (Other Zones) 

c2 1 
L e , ,  
Av 

170 
170 
3.3 

1 x 1 0 - ~  
0.0 
0.0 

0.0476 
6 Doppler Widths 
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The analytical solution is provided in Appendix A. We cannot easily solve for n close 
to the pumped region or near the edge of the slab since the boundary layers add additional 
complexity. However, the slope of n far from the boundaries may be obtained analytically. 

The predicted slope of n versus position, equation (A.7) from the appendix, is -1.7 x 
lov4. The results of IMC and SIMC have been plotted in Fig. 12. lMC and SIMC produce 
slopes of -1.7 x respectively. Although SIMC has a lower noise 
figure than IMC, as seen in this graph, it produces the wrong slope. The directional 
dependence of photons, K ,  as defined in equation (B.1) was found experimentally to be 
about 1.6. 

and -1.3 x 

1 .E-04 1.5E-05 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8  0.9 1 

Podtion 

+Predicted - 4- IMC -. 0 . .  SIMC - e- IMC Std. Dev. --C SIMC Std. Dev 

FIG. 12. Results for Milne’s Problem 

This error for SIMC is due to the teleportation problem discussed in Sec. 2.5. When we 
refine the zoning by a factor of ten, which reduces the optical depth per zone, SIMC and 
IMC both agree with the predicted slope, -1.7 x loF4. Attempts to use geometric zoning 
schemes, with thick zones in the middle of the uniform regions on the left and right sides 
of this problem, suffer from the photon teleportation problems described previously. 

Equation (B.5) from the appendix shows how teleportation error affects the predicted 
slopes for this problem. The multiplicative term, [tanh (X/2)]/(X/2), modifies the slope 
based on the optical depth per zone, A. As the optical depth is decreased, X goes to 0 and 
the multiplicative term asymptotically approaches 1 and converges to the correct solution. 
In the other limit as the optical depth is increased, the factor goes to 0 and reduces the 
computed slope. 

In this example problem for SIMC, X is 2.16 (assuming the value of K to be 1.6) while a 
tenfold increase in zoning leads to a X of 0.216. Since in the derivation of equation (B.5) 
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we assumed X was much less than 1, we cannot use it to double check the computed slope 
of the example problem. However, we can see that a X of 0.216 yields a 0.4% error. While 
not derived for the collisionally pumped trap problem, it does reinforce the observation that 
you need finer zoning in places of large slope while zones with little to no slope do not 
need as much refinement. 

In the IMC method, the effective scattering reduces the absorption and this must be taken 
into account. The resulting equation is very similar to (B.5) with a minor change. Since the 
absorption cross section is fa as given in equation (lo), the absorption per zone is reduced 
by a factor o f f .  This results in a prediction for the slope for IMC as 

From this expression, we can see how IMC's effective scattering dampens the tele- 
portation error. As f approaches 1 (corresponding to smaller time steps), the scattering 
contribution disappears and this equation approaches equation (B.5) and behaves as SIMC. 
As f decreases, the multiplicative term from above contributes less and less to the behavior 
of the slope. The limiting value of is ((712 + C 2 1 )  / (15'12 + C Z ~  + A2l) which represents 
the most that the teleportation error may be dampened. 

4. CONCLUSIONS 
In this paper, we have compared Implicit Monte Carlo (IMC) to the Symbolic Implicit 

Monte Carlo (SIMC) technique, using collisional pumping, the surface heating problem and 
the Milne problem as diagnostic applications. SIMC was also extended with a temporally 
persistent version of the weight vector approach of [3], demonstrating the value of weight 
vectors when accurate spectral information is desired. In addition to the numerical runs, 
partial analytical solutions were used to verify the accuracy of the Monte Carlo solutions 
and to point to the sources of systematic errors when they occurred. 

An important result of this investigation is to demonstrate conditions where SIMC and 
IMC succeed and fail. In general, SIMC produces much lower noise for high opacity 
problems, with the spectral results using the weight vector approach being truly stellar, 
because the SIMC algorithm does not expend computer time performing non-physical 
effective scattering. This performance advantage comes at the price of increased sensitivity 
to teleportation error that results from high opacity per zone and from additional time 
needed to solve a linear system of equations with matrix size based on the number of zones. 
Although teleportation error will also occur for IMC, the level of severity is moderated by 
the portion of the physical absorption that is rolled over into effective scattering. Finer 
zones are required for SIMC than are needed for IMC as a result. 

While the effective scattering in IMC dampens the effect of teleportation error, it becomes 
highly subject to this problem when the time step is small. When effective scattering is 
small, sensitivity to teleportation error rises to a level equivalent to that of SIMC. This 
is a somewhat unfortunate situation for the IMC algorithm. Generally, we expect that 
computational results should improve as the time step is decreased. In IMC, the accuracy 
of results can become worse due to the increasing influence of teleportation error and the 
user must be very careful as a result. 

The weight vector extension provides spectral information with a very good noise figure, 
especially for regions of frequency space that would be sampled with low probability 
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in  the line profile. Global results that are the result of frequency integrations do  not 
benefit significantly from this extension (on scalar processors) due to the additional cost of 
computing exponentials for each element of the weight vector for each track the particle 
makes. Weight vectors have the advantage that the distance to the next zone has to be 
computed only once. On vector processors, employed in [3], where a vector of a dozen 
or so exponentials would take the same time as a single scalar exponential, the weight 
vector extension of SIMC does not require much additional time and improved algorithm 
performance is worthwhile even if spectral information is not required. 

Geometric zoning, so that thin zones are used near transition regions, provides a signifi- 
cant improvement in the accuracy of the solution provided by SIMC. The length of tracks 
in the limit of large time step are controlled by the zoning in SIMC, and not by effective 
scattering. Careful zoning in SIMC, which inherently has a smaller execution time than 
IMC, improves the accuracy of the solution. The expected control on zone size, using the 
spatial constancy of the upper level atomic population fraction as a guide, works well for 
SIMC if the error introduced by photon teleportation is carefully watched. 

IMC can benefit from zone refinement, especially if small time steps are required to 
improve temporal resolution. However, a word of caution must be given here. The IMC 
algorithm can demonstrate poor convergence behavior due to teleportation error as the time 
step is reduced and we have actually seen results for IMC actually get worse when the time 
step is reduced independently of the zone size. IMC seems to be somewhat magical in 
that it delivers good results for coarse time steps and zoning, but its results can get worse 
in response to refinement if one is not careful. SIMC responds much more systematically 
to independent zone and time step refinements, with good convergence characteristics on 
both fronts. 

Biasing significantly reduces the noise for SIMC, especially if the line center opacity 
is high. Biasing the spontaneous emission in favor of the thin zones near the surface of a 
transition region and in favor of thin subzones near the surface of a centrally located thick 
zone in cases of high line center opacity, can produce results of very high precision and 
low noise if one wants to examine the physics of a boundary layer. The IMC algorithm is 
less capable in this regard. 

In general, all of the methods examined in this paper have their advantages and disadvan- 
tages. The teleportation issue provides an advantage for IMC, providing relatively coarse 
zoning and time step sizes are adequate. If one wants to perform significant zone and time 
step refinement in order to produce high accuracy results, however, SIMC becomes the 
method of choice with its better convergence behavior. If spectral information is required 
in a high opacity region or a transition region, the SIMC method extended with weight 
vectors provides the best method. 

If the problem of teleportation were to be removed from the equation the one disadvantage 
of SIMC evaporates, and the method would become the method of choice. We will examine 
the possibility of accomplishing this, using a new formulation for the transport equation, 
in future work. 
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APPENDIX A 
Upper Atomic Population Derivation for Milne’s Example 

The slope of the upper atomic population may be derived by first starting with equations 
(5) and (6 )  and looking at just the central zone. The flux, F ,  is defined as usual, 

Setting all derivatives with respect to time to zero and integrating the transport equation 
(5) over angle and frequency and then adding it to equation (6) gives 

Since this problem is symmetric, we can integrate this equation over the right half the 
central zone of width, L,,,, giving 

d~Clz(1 -71) S -(1 c 1 2  - f i)Lezc (A.3) J 2 
F = 1 dzC12(1 -n) = 

1 
TL.=c 

; is lab 1 

where A is the average upper atomic population over the source region. This gives the total 
number of excitations per time. For the rest of this problem, we are only concerned with 
the right hand side of the slab where Clz is equal to 0. 

In order to get an analytical solution outside the pumped region, we notice that the flux 
is constant there and it is given by equation (A.3). Guided by the diffusion approximation, 
we now assume that that the radiation field is given by the form 

where B(z)  is an isotropic Planckian distribution, 

and the second term is a PI distribution. 
The flux can be found from equation (A. l), 

which shows that g is not a function of space. We also note that the line profile, 4, must 
integrate over frequency to give 1. Therefore it must be equal to the value l f i l v .  We now 
substitute f, from equation (A.4), into equation (5 )  and use the value of B from equation 
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(AS) and the fact that g does not vary in space. From this we get a relationship between 
B and g which may be used in equation (A.6) to obtain a value of F for the left hand side 
of the slab. This F must be equal to the F from equation (A.3). Setting these two equal 
to each other and assuming that n << 1, we obtain a solution for the slope of the upper 
atomic population: 

APPElWIX B 
Teleportation Error Derivation 

The difficulity in setting up a problem lies in knowing how fine the mesh must be to 
reduce teleportation error. For this problem, we can define a parameter to represent the 
optical depth per zone as given in the following equation: 

where IC is factor that takes into account directional dependence of the photons. 

n 

-2h -h 0 h 2h 

J?IG. B-1. Zoning Diagnm for Milne’s Problem 

This problem has been discretized into equal sized zones with the assumption that the 
upper atomic population, n, is constant across a zone. Since we have focused on the right 
side, n can be represented by a step function with steps at each multiple of X as shown in 
Fig. B-1. In this figure, An is equal to no - nl.  We are interested in computing F at 
the midpoint in terms of X and then relate this to the slope of the upper atomic population. 
Since we wish to study the effects of small optical depth per zone length, we assume X is 
much less than one. Doing so allows us to approximate the angle integrated photon density 
distribution by integrating the emission in each zone and differencing the flux from the 
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right and left as 

1 
3 

F = - A m  { [ (1 - e-') B (no) + (e-' - e-2x) B(n0 + An) + . .] 
- [(I - e-^) B (n l )  + (e-A - e-'^) B(n1 - An) + ..a]}. (B.2) 

The steady-state solution, B,  has slightly changed from its form in equation (A.5) to its 
new form as 

n-421 B(n) = 
2c [K12 - (K2l + K12) 4. 

The bracketed terms in equation (B.2) can be summed to get the following solution for 
F :  

The slope can now be approximated by using the definition of X from equation (B.l) along 
with equation (B.4) to arrive at 

dn 
03.5) 

3 [K12 - (K21 + K I Z )  AI2 tanh(X/2) = -F An - N -- 
X/2 - - 

&c Lzont? -421 Au2 


